SAVE THE GORILLAS
by
Owen Fonorow and Sally Snyder
Jewell
Copyright 2008
Permission to reprint is granted with attribution
so long as article is intact without
alteration.
“The Committee on
the Feeding of Laboratory Animals of the U. S. National Academy of Sciences -
National Research Council recommends far more vitamin C for monkeys than the
Food and Nutrition Board of the same U. S National Academy of Sciences -
National Research Council recommends for human beings.” – Linus Pauling, How
to Live Longer and Feel Better, 1986
The recent epidemic of heart
disease among gorillas in zoos may have a simple solution. Biologically, the gorilla is similar to
humans and other high order primates. This
article concentrates on one startling similarity – the inability of primates to
synthesize ascorbic acid commonly known as vitamin C. The great apes share a common genetic defect
with humans – the inability to make the enzyme L-gulonolactone oxidase in the
liver, an enzyme that would otherwise allow primates to convert the sugar
glucose into ascorbic acid. Geneticists refer to this defect in primates as the
GLO mutation. Two time Nobel prize-winning chemist Linus Pauling
theorized that this defect is the cause of heart disease.
This deficiency in primate
metabolism, the inability to synthesize ascorbic acid, is rare in the animal kingdom. Almost all other species such as lions,
tigers, bears, dogs, cats, cows,
chickens, elephants, etc. make their own
vitamin C, and they make a lot every day.
Wild animals generally make more vitamin C than domesticated animals
(Levy, 2006). The species that make
their own vitamin C share another trait; they do not suffer the same
cardiovascular disease that afflicts the few species with the GLO defect such
as humans, primates, and guinea pigs.
The gorilla community in the
world’s zoos is a microcosm of the human condition. The current epidemic of heart disease in the
gorilla may provide scientists the means to clinically study Pauling’s ideas –
studies that so far have been lacking in
humans. There is little reason to
refrain from testing the Pauling ideas in gorillas. The mere fact that the
great apes are succumbing to heart disease supports Pauling’s theory. Should the two time Nobel prize winner Linus
Pauling be right, then vitamin C supplements will solve the gorilla heart
disease problem in a matter of weeks. If
Linus Pauling is wrong, little or no harm can be expected from trying his
nontoxic therapy, and the same logic applies to heart disease in humans.
The species that are unable to
make their own vitamin C require a small amount of this molecule in their diet
to avoid a quick death from the deficiency disease scurvy. The Recommended Daily
Allowance (RDA) of vitamin C for humans has been established at 60
milligrams. This small amount of vitamin
C every day prevents outright death.
However, Linus Pauling and others have argued that larger amounts put us
in better health. Authorities on
primates as published by subcommittees of the National Academy of Sciences
recommend that primates in captivity receive large amounts of vitamin C daily
for the best health.
. . . much effort has been devoted
by the Subcommittee on Laboratory Animal Nutrition to finding the intakes of
various nutrients that puts them in the best of health. These careful studies have led to the
formulation of several, rather similar recommended diets for laboratory
monkeys. The amount of ascorbic acid
(vitamin C) in these diets lies in the range of 1.75 g per day to 3.50 g per
day, scaled up to the 70 kg of body weight (in humans); the 1.75 g per day
scaled from the prescription for rhesus monkeys and 3.50 g per day from that
for squirrel monkeys. These monkeys
weigh only a few kilograms, but there is little doubt that the need for
ascorbic acid is proportional to body weight . . . . – Linus Pauling, How to Live Longer
and Feel Better, 1986
The additional amount of vitamin C
in the diet that leads to the best of health in humans is controversial. The amount of ascorbic acid that other species
synthesize can be used as a model. When
adjusted for body weight, it has been
determined that the amount of ascorbate produced by mammals ranges from an estimated 3,000 mg to more than
13,000 mg daily (Pauling, 1986). Nearly all
species manufacture these copious amounts 24/7 out of the sugar glucose, and
they make more vitamin C under stress.
Glucose is present in the blood as carbohydrates are broken down during
digestion into sugars.
Gorillas, like man, must obtain
their vitamin C from the foods they eat.
In 1970, the world-renowned scientist Linus Pauling argued that the
vitamin C requirement of primates is an indicator of the level of vitamin C
required for optimal health in humans.
Writing in the Proceedings of the
National Academy of Sciences, Pauling cited studies which determined that
the gorillas would obtain 4.5 grams (4,500 mg) of vitamin C in the 40 to 50
pounds of food that they eat daily in their natural habitat (Pauling, 1970).
Pauling believed that chronically
low levels of vitamin C, while not killing us, eventually results in various
chronic maladies shared by many primates and also the guinea pig. These maladies are numerous and include all
forms of cardiovascular disease, e.g. atherosclerosis, heart attack, and
stroke.
Vitamin C expert and biochemist
Irwin Stone, writing in his 1972 book The
Healing Factor: Vitamin C Against Disease, outlines the vitamin C
requirements of the few species that cannot make vitamin C that have been studied
in captivity. Stone relates:
From the "Committee on Animal
Nutrition, Nutrient Requirements of Laboratory Animals" (1962) we find
some startling figures. The recommended diet for the monkey - our closest
mammalian relative - is 55 milligrams of ascorbic acid per kilogram of body
weight or 3,830 milligrams of ascorbic acid per day for the average adult
human. The daily amount suggested as
adequate for the guinea pig varies depending upon which of two diets is
selected and ranges from 42 to 167 milligrams per kilogram of body weight
(based on a 300-gram guinea pig). This
amounts to 2,920 milligrams to 11,650 milligrams per day for the average adult
human.
There is little debate, and there
can be little doubt, that large amounts of vitamin C are normal for gorillas
and that these large amounts put them in better health than smaller
amounts. Careful studies have determined
that the daily vitamin C recommendation for captive, non-human primates is 25
milligrams per kilogram of body weight (Portman 1970). As an example, if we apply this calculation
to humans, i.e. 25 mg multiplied by 70
kg, we calculate the human daily requirement of vitamin C to be 1,750 mg, much higher than the 60 to 75-mg
RDA.
Gorillas weigh considerably more than humans. According to the San Diego Zoo, male gorillas generally weigh from 300 to 500 pounds (136 to 227
kilograms) and female gorillas weigh from 150 to 200 pounds (68 to 91
kilograms). If we apply the calculation
to the smallest female and the largest male, the daily vitamin C range for the
captive gorilla is from 1,700 mg (68 kg multiplied
by 25 mg) for the female gorilla to 5,675
mg (227 kg multiplied by 25 mg) for the
heaviest male gorilla.
The fact that gorillas are
suffering heart disease in greater number is evidence that something has
changed about the gorilla conditions in zoos.
It is unlikely that zookeepers would deliberately mistreat these
animals, but they may be getting bad advice.
Dietitians trained in the old-fashioned nutrition are giving bad advice
to humans about vitamin C. Our cursory
review of the zoological literature has provided an indication that so-called
nutrition experts have argued that less
vitamin C is required in certain primates than the amounts these animals would
obtain in the wild. Some authorities
have even advised that more vitamin C might possibly be harmful.
This advice, related to iron intake,
is bad advice. The iron source in the diet should be
reduced, not the dietary intake of vitamin C.
If captive gorillas are receiving
the same amount of vitamin C that zookeepers have long considered adequate,
perhaps some new variable is present. The
nonprofit Vitamin C Foundation is aware of several factors that reduce the
bioavailability of vitamin C in humans, and it is safe to assume that these
factors are at work in our genetic cousins.
Either the animal food is not fresh (meaning
the highly reactive vitamin is lost); the diet has been changed to include
more processed foods (which would
adversely affect cell membranes and thus vitamin C uptake to cells); or the
process of “evolution” in zoos is allowing more gorillas that would otherwise
have died in the wild to survive and have offspring.
A topic about the gorillas dying
in captivity has been started at the Vitamin C Foundation online forum. The following posts from a zoo insider
provide a clue about what may be
happening to the great apes:
I have worked in a small zoo and
all the workers had fun sharing their
soda with the matriarch spider monkey. She
loved it and would throw a tantrum like a child until she got some. The other monkeys loved it as well.
Their standard diet of monkey chow
was supplemented with stale donuts, cakes, and bread from a local bakery and
stale vegetables and fruit. Guess what food got eaten first? The cakes of course!!! Every animal from the wolves to the monkeys
ate like that. The monkey chow would
mostly be eaten by the monkeys on the low end of the pecking order because the
stronger animals would fill up on the sweets.
I would believe that is standard
practice with many zoos due to keeping food costs down. – Chris, Vitamin C Foundation forum, http://www.vitamincfoundation.org/forum/viewtopic.php?f=3&t=5590
Another poster at our forum relates his conversation with
a veterinarian:
A friend of mine, a vet, mentioned
to me that these animals are fed refined carbohydrates. Gorillas wouldn't normally eat these rapidly
digested carbs in the wild. So I guess
the reason is the dramatic increase of processed foods in their diet. – Mica
A solution to the plight of
captive gorillas may be as simple as providing our close cousins with vitamin C
supplements. From our research we
believe that restoring vitamin C metabolism in the captive gorilla is likely to
clear up many other afflictions which appear in epidemic proportions in
gorillas, such as testicular atrophy
and infertility.
Improving the gorilla diet by
making it more like what they would obtain from their natural habitat is
important, albeit expensive. It is
likely that the better (more natural) the diet, in both humans and gorillas,
the less vitamin C is required for good health.
Dr. John Ely, Professor Emeritus of Nutrition at Washington State
University, developed his glucose-ascorbate antagonism theory (GAA) more than
30 years ago. It is known that most
species can convert the sugar glucose into vitamin C in the liver or kidney. Vitamin C and glucose molecules are similar,
and both molecules share a common insulin-mediated uptake into cells through
the lipid-rich cellular membrane.
Dr. Ely suggests that high levels
of sugar in the blood crowds out the vitamin, increasing the probability that
glucose, rather than ascorbate (vitamin C), will enter cells. Dr. Ely calls this effect glucose-ascorbate antagonism.
He cites evidence that reducing blood
sugar levels increases the effectiveness of vitamin C supplements for fighting
colds, for example. This theory would
suggest that in addition to increasing the gorilla’s vitamin C, perhaps by using
vitamin C supplements or by adding vitamin C to their water, zookeepers would do well by their charges to eliminate
any sugary foods that these animals are currently allowed to ingest.
Furthermore, Mr. Thomas Smith, http://www.healingmatters.com,
has uncovered medical evidence that the condition commonly referred to as Type
II diabetes is a disturbance of the cell membrane caused by eating processed
foods that contain abnormal trans fatty acids.
These processed fats interrupt normal cell membrane repair, and the net
effect is that the insulin-mediated uptake of glucose from the blood into cells
is reduced. Over time, glucose uptake is limited in billions of cells,
leading to elevated blood sugar levels.
Because vitamin C shares these common entryways into cells, if Smith is
correct, many of the adverse effects associated with Type II diabetes are
caused by vitamin C starvation in those cells with damaged membranes. This leads us to conclude that gorillas (and
humans) should not be given highly processed foods such as donuts and pastries
and that if they are, their vitamin C needs will increase considerably.
For more details on Mr. Smith’s
findings and the dangers in eating so-called trans fats, visit his Web site.
After the gorilla diet has been
rectified and/or vitamin C supplements are being routinely provided, zookeepers may ask what other supplements
might be good for their primate charges.
The answer is vitamin E, proline,
and perhaps the amino acid lysine.
Twenty years ago
scientists made an important discovery that only one form of cholesterol –
Lp(a) – begins the process of forming
atherosclerotic plaques in humans. Lp(a) is an ordinary cholesterol
particle with a sticky apoprotein particle called apo(a) attached to its surface.
Lp(a) does not come in a standardized size or mass; the apo(a) may
attach to a wide variety of low density lipoproteins during its formation in
the liver. Essentially, all human blood
contains Lp(a). However, there can be a
thousand-fold range in its plasma concentrations between individuals. According to Pauling and others, high levels
of Lp(a) are associated with high incidence of cardiovascular disease.
If the news reports describing the
plight of gorillas in captivity are accurate, the cardiovascular disease that
manifests in the gorilla is not identical to human cardiovascular disease. If true, this suggests that the primary
precursor, the Lp(a) molecule that Pauling told us initiates the disease
process, may have a different binding region in gorillas than the lysine
binding region of human Lp(a). According
to research available from the National Institutes of Health's online database
MEDLINE, and as related in our recent
book:
The rhesus monkey, like human
beings, cannot make its own vitamin C. The
Lp(a) found in rhesus monkeys, however, does not bind to lysine and has thus
been designated as LBS-. The rhesus
monkey's Lp(a) does have a "proline binding domain," and thus this
peculiar form of Lp(a), LBS- binds to fibrinogen. – O. Fonorow and S. Jewell, Practicing Medicine Without A License? The
Story of the Linus Pauling Therapy for Heart Disease, 2008
Linus Pauling’s therapy to reverse
heart disease in humans consists of high dosages of nutritional substances he
called Lp(a) binding inhibitors. These substances specifically target the Lp(a)
molecules, making them less “sticky” and thus less likely to attach to the walls
of damaged arteries. The Lp(a) binding
inhibitors for humans include the non-toxic amino acid lysine to account for
the lysine binding region in their Lp(a).
It is unknown whether gorilla Lp(a) is LBS- or LBS+. If LBS-, we can infer that proline would be
the active “Lp(a) binding inhibitor” in the gorilla, just as proline would be
predicted to inactivate Lp(a) in the rhesus monkey. Until we know, both of these amino acids are
non-toxic and thus harmless. Considering
the serious problem facing zookeepers, it
would be prudent to provide the gorillas with adequate amounts of both
amino acids in addition to correcting vitamin C metabolism.
Vitamin E is an antioxidant
vitamin that helps to recycle vitamin C in the body. Linus Pauling discusses in his 1986 book, How to Live Longer and Feel Better, the
vitamin E research showing that this vitamin in humans prevents and lowers the
risk of heart disease. The gorilla would
obtain considerable vitamin E in its natural habitat. Thus, we may conclude that the gorilla would
do well to receive more vitamin E.
Zookeepers should consider foods with a high vitamin E content, or even
vitamin E supplements.
The Vitamin C Foundation has
approved an Lp(a) binding inhibitor intended for human consumption that is
called Cardio-CÒ. The product contains
vitamin C, lysine and proline without sugar or other fillers. Mixed with water it makes a drink that tastes
like orange juice. This healthy soft
drink might make this important supplementation easier in the gorilla. Tower Orthomolecular Laboratories offers a
more complete product with vitamin E.
Tower's Heart TechnologyÔ is also a good-tasting
nutritional drink mix without fillers or impurities. Zookeepers can visit the
following web sites http://www.vitamincfoundation.org and http://www.hearttechnology.com for
further information.
The recent epidemic of heart
disease among captive gorillas all over the world has led these authors to the
supposition that gorillas are suffering from chronic scurvy. This supposition is easily tested, and
zookeepers can determine whether giving vitamin C supplements to the gorillas will
reverse their disease as Linus Pauling predicted it would in humans.
Gorillas have the same genetic
defect (GLO) that is common among the high order primates. This defect prevents primates from making
ascorbate in the liver. Therefore the
gorilla, like humans, cannot make a
single molecule and must obtain it from the diet to live.
In 1989 Dr. Linus Pauling and cardiologist Dr.
Matthias Rath, building on the earlier work of the Canadian doctor Willis from
the 1950s, identified chronically low
levels of vitamin C in humans as the primary cause of heart disease. The Pauling vitamin C theory of heart disease has
been dismissed a priori by medicine
and for more than 20 years has never been clinically investigated by modern
medical science.
If the Linus Pauling theory is
valid, then the current heart disease epidemic in our primate cousins is caused
by an interruption in their vitamin C metabolism. Importantly, Pauling’s theory and therapy may
finally be tested in the gorilla, leading to its wider adoption in humans. Not studying the Pauling therapy in humans or
gorillas is inexcusable, given the breadth and depth of the science that has
been available for 50 years regarding the connection between chronically low
vitamin C and the gradual development of heart disease. Zookeepers have an obligation to at least try
this simple solution. They should
restore to the bloodstream the amount of vitamin C that these apes would
maintain from foraging for food in their natural habitat.
When the human primate gets bad
advice he is free to browse the Internet and learn how to overcome the
deficiency in metabolism. Gorillas held
in captivity must obviously rely on the knowledge and judgment of their
zookeepers to keep them healthy.
Gorillas, humans, other high order primates, and the guinea pig are
among the very few creatures that can suffer and die of the vitamin C
deficiency disease scurvy, both chronic as well as acute. We urge zookeepers to provide gorillas in
captivity with vitamin C. We also ask
them to help us investigate the Linus Pauling therapy for cardiovascular
disease in primates by keeping records and making them publicly available. If the authors can help in any way, we will
make ourselves available.
The Pauling theory and therapy
reviewed in this article are detailed in a new book that describes the 50-year
history of the vitamin C theory of heart disease, as well as the therapy for
this condition invented by two time Nobel prize recipient Linus Pauling.
Practicing Medicine Without A License? The Story of the Linus
Pauling Therapy for Heart Disease
By Owen Fonorow and Sally Snyder Jewell, 2008
More
information is available at www.practicingmedicinewithoutalicense.com
We are
interested in whether Pauling’s advice can halt the epidemic of heart disease
in gorillas. We encourage zookeepers to
join the public Vitamin C Foundation forum, www.vitamincfoundation.org/forum,
where they may ask questions and provide reports on their progress in curing
the gorillas.
Portman, O.,
1970. Nutritional requirements (NTC) of non-human primates. In: Harris, R.S.
(Ed.), Feeding and Nutrition of Nonhuman Primates. Academic Press, New York, pp
87–115..
Bilby, L.W., 1968. A pilot scheme to
investigate the diets of some of the mammals at the London Zoo. I. primate diets.
In: Crawford, M.A. (Ed.), Comparative Nutrition of Wild Animals. Academic
Press, London, pp 63–75.
Calvert, J.J.,
1985. Food selection by western gorillas in relation to food chemistry.
Oecologia 65, 236–246.
Carpenter, K.J., 1986. The History of Scurvy
and Vitamin C. Cambridge University Press, New York.
Caton, J.M.,
1999. A preliminary report on the digestive strategy of the western lowland
gorilla. Aust. Primatol. 13, 2–7.
Eaton, S.B., Konner, M., 1985. Paleolithic
nutrition: a consideration of its nature and current implications. N. Eng. J.
Med. 312, 283–389.
Greenberg,
L.D., 1970. Nutritional requirements of macaque monkeys. In: Harris, R.S.
(Ed.), Feeding and Nutrition of Nonhuman
Primates. Academic Press, NY, pp 117–201.
Hladik, C.M.,
1977. Chimpanzees of Gabon and chimpanzees of Gombe: some comparative data on
the diet. In: CluttonBrock, T.H. (Ed.), Primate Ecology. Academic Press,
London, pp 481–501.
Fonorow, O.,
Jewell, S. 2008. Practicing medicine without a license? The story of the Linus
Pauling therapy for heart disease, Lulu.com, 2008, 230 p.
Kallman, B.,
1989. Micronutrient intake in laboratory animals and humans. J. Appl. Nutr. 41,
23–25.
Kerr, G.R.,
1972. Nutritional requirements of subhuman primates. Physiol. Rev. 52, 415–467.
Keshinro,
O.C., 1985. The unconventional sources of ascorbic acid in the tropics. Nutr.
Rep. Int. 31, 381–387.
Levine, M.,
1986. New concepts in the biology and biochemistry of ascorbic acid. New Eng.
J. Med. 314, 892–902.
Levy, T. 2006.
Curing the incurable: vitamin C, infectious diseases and toxins. Las Vegas.
Livonbooks. 444p.
Milton, K., 1979. Factors influencing leaf
choice by howler monkeys: a test of some hypotheses of food selection by generalist herbivores. Am. Nat. 114, 362–378.
Milton, K.,
1986. Features of digestive physiology in primates. News Physiol. Sci. 1,
76–79.
Milton, K.,
1987. Primate diets and gut morphology: implications for human evolution. In:
Harris, M., Ross, E.B. (Eds.), Food and Evolution: Toward a Theory of Human
Food Habits. Temple University Press, Philadelphia, pp 93–116.
Milton, K.,
1993b. Diet and primate evolution. Sci. Am. 269, 86–93.
Milton, K.,
1999a. Nutritional characteristics of wild primate foods: do the natural diets
of our closest living relatives have lessons for us? Nutrition 15 (6), 488–498.
Milton, K.,
1999b. A hypothesis to explain the role of meat eating in human evolution.
Evol. Anthrop. 8, 11–21.
Milton, K.,
2002. Hunter-gatherer diets: wild foods signal relief from diseases of
affluence. In: Unger, P.S., Teaford, M.F. (Eds.), Human diet. its origin and evolution.
Bergin & Garvey, Westport, CT, pp 111–122.
Milton, K., 2003. Micronutrient intakes of wild
primates: are humans different? Comparative Biochemistry and Physiology - Part A: Molecular & Integrative
Physiology, Volume 136, Issue 1, September 2003, pp 47-59
Nelson, C.A.,
Greer, W.E., Morris, M.D., 1984. The distribution of serum high density
lipoprotein subfractions in nonhuman primates. Lipids 19, 656–663.
Nicolosi,
R.J., Hunt, R.D., 1979. Dietary allowances for nutrients in nonhuman primates.
In: Hayes, K.C. (Ed.), Primates in Nutritional Research. Academic Press, NY, pp
11–37.
National
Research Council, 1968. Recommended Dietary Allowances. seventh ed. Nat. Acad.
Sci., Washington, DC.
Oftedal, O.T.,
1991. The nutritional consequences of foraging in primates: the relationship of
nutrient intakes to nutrient
requirements. Phil. Trans. R. Soc. Lond. B 334, 161–170.
Pauling, L.
1970. Evolution and the need for ascorbic acid. Proceedings of the National
Academy of Sciences of the United States of America, Vol. 67, No. 4 (Dec. 15,
1970), pp 1643-1648
De Pee, S.,
West, C.E., Permaesih, D., Martuti, S., Hautvast, J.G.A.J., 1998. Orange fruit
is more effective than are dark-green leafy vegetables in increasing serum
concentrations of retinol and beta-carotene in schoolchildren in Indonesia. Am.
J. Clin. Nutr. 68, 1058–1067.
Stanford, C.,
1999. The Hunting Ape. Princeton University Press, Princeton, NJ.
Stone, I.
1972. The Healing Factor: Vitamin C Against Disease. New York, Putnam, 280 p.
. Tutin,
C.E.G., Fernandez, M., Rogers, M.E., Williamson, E.A., McGrew, W.C., 1991.
Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lope
Reserve, Gabon. Phil. Trans. R. Soc. Lond. B 334, 179–186.
Wildman, D.E., Grossman, L.I., Goodman, M.,
2002. Functional DNA in humans and chimpanzees shows that they are more similar
to each other than either is to other apes. In: Goodman, M., Moffat, A.S.
(Eds.), Probing human origins. American Academy of Arts and Sciences
Publication, pp 11–32.
Williams,
R.J., 1978. Nutritional individuality. Hum. Nature 6, 46–53.
Wrangham,
R.W., 1977. Feeding behaviour of chimpanzees in Gombe National Park, Tanzania.
In: Clutton-Brock, T.H. (Ed.), Primate Ecology. Academic Press, London, pp
504–538.